details_view: 38 von 1198

 

Verbundvorhaben: OPTISYSKOM - Optimierung der Prozesse und Systeme sowie der Lebensdauer der Gesamtanlage und ihrer Komponenten; Teilvorhaben: 1.2c und 2.3

Zeitraum
2020-04-01  –  2024-03-31
Bewilligte Summe
74.529,00 EUR
Ausführende Stelle
Förderkennzeichen
03EE5035C
Leistungsplansystematik
Konventionelle Kraftwerkstechnik - Komponentenentwicklung [EA1312]
Verbundvorhaben
01202162/1  –  OptiSysKom - Optimierung der Prozesse und Systeme sowie der Lebensdauer der Gesamtanlage und ihrer Komponenten
Zuwendungsgeber
Bundesministerium für Wirtschaft und Klimaschutz (BMWK.IIB5)
Projektträger
Forschungszentrum Jülich GmbH (PT-J.ESE5)
Förderprogramm
Energie
 
Innovative Gasturbinen sind das Rückgrat der Energiewende. Durch das hohe Flexibilitätspotenzial tragen sie dazu bei, die fluktuierende Erzeugung aus dem stetig steigenden Anteil der erneuerbaren Energien zu kompensieren. Gasturbinen leisten somit einen wichtigen Beitrag zur Optimierung komplexer Gesamtenergiesysteme mit hohen Anforderungen an Flexibilität, Versorgungssicherheit und Wirtschaftlichkeit. Die geforderte Flexibilität geht dabei aber bei den heutigen Turbomaschinen einher mit höherem Verschleiß, großen Wirkungsgradeinbußen im Teillastbereich und einer verkürzten Lebensdauer. In dem Vorhaben 'OptiSysKom' sollen die in vorangegangenen Forschungsprojekten der AG Turbo begonnenen Aspekte der Auswirkungen des Betriebs der Turbomaschinen im Verbund mit den Erneuerbaren mit Blick auf Lebensdauer und Effizienz vertiefend weitergeführt werden. In AP 1.2c, durchgeführt vom Institut für Werkstoffkunde (IfW) der TU Darmstadt mit dem Industriepartner MAN Energy Solutions SE (MAN), werden am IN792 Kriecheigenschaften unter Temperaturbeanspruchung bei variablen Blechdicken systematisch untersucht. Dies dient als Grundlage um zuverlässig Kennwerte zur Beschreibung des Kriechverhaltens als Funktion der Strukturdicke von Bauteilen und Komponenten wie bspw. Gasturbinenschaufeln zu generieren. Der Effekt des Kriechverhaltens dünnwandiger Strukturen ist unter dem Namen 'thin wall creep', 'thickness debit effect' oder 'thin wall effect' bekannt. In AP 2.3, durchgeführt vom Institut Gasturbinen, Luft- und Raumfahrtantriebe (GLR) der TU Darmstadt mit dem Industriepartner Rolls-Royce Deutschland (RRD), werden neue Kühlkonzepte für die konvektive Innenkühlung von deutlich kleineren Turbinenrotorschaufeln experimentell untersucht. Zukünftige flexible Gasturbinenanlagen zur Stromerzeugung müssen kleiner gebaut werden, um steilere An- und Abfahrrampen zu ermöglichen.