details_view: 4 von 6

 

UnABESA: Universelle Anbindung von Batteriespeichern aus Elektrofahrzeugen für Stationäre Anwendungen; Teilvorhaben: Konzeption und Entwicklung eines DC-DC-Wandlers und Regelungsstrategien.

Zeitraum
2017-06-01  –  2020-12-31
Bewilligte Summe
667.188,90 EUR
Ausführende Stelle
Förderkennzeichen
03ET6126B
Leistungsplansystematik
Elektrochemische Speicher - Leistungselektronik und Peripherie [EA2317]
Verbundvorhaben
01176665/1  –  UnABESA
Zuwendungsgeber
Bundesministerium für Wirtschaft und Klimaschutz (BMWK.IIB5)
Projektträger
Forschungszentrum Jülich GmbH (PT-J.ESI3)
Förderprogramm
Energie
 
Im Verbundvorhaben UnABESA sollen stationäre Energiespeicher auf Basis von Energiespeichern aus automobilen Anwendungen entwickelt werden, ohne in die Speicher- bzw. Zellarchitektur selbst einzugreifen, also ohne den Hochvoltspeicher zu zerlegen, neuen Entwicklungsaufwand in die Elektronikkomponenten zu stecken und die Zertifizierung zu verlieren. Im Vorhaben wird dazu die Schnittstelle zwischen automobilem Energiespeicher und stationärem Wechselrichter über ein intelligentes bidirektionales Koppelelement optimal konzeptioniert, entwickelt und umgesetzt. Ziel der Hochschule München ist die Erforschung, Konzeption und Entwicklung eines geeigneten DC-DC-Wandlers für diese Anwendung, sowie die Erforschung möglicher Regelungsstrategien. Das Projekt UnABESA besteht aus acht Arbeitspaketen, in denen die vier Teilziele der vier Projektpartner erarbeitet werden. Die Hochschule München arbeitet bei insgesamt 4 Arbeitspaketen (AP1 'Entwicklung Gesamtkonzept', AP3 'Entwicklung magnetische Komponente', und AP8 'Aufbereitung und Kommunikation der Ergebnisse') mit und verantwortet die drei Arbeitspakete AP2 'Entwicklung DC-DC-Wandler', AP5 – 'Regelungskonzepte für heterogene stationäre Speichersysteme' sowie AP6 'Entwicklung und Validierung des Gesamtsystems'. In AP 2 soll durch iterative Untersuchung und Entwicklung das optimale Design für die das Koppelement DC/DC-Wandler gefunden werden. In AP 5 werden Methoden erforscht, heterogene, verteilte Batteriesysteme nach wählbaren Zielfunktionen hin optimal zu betreiben. In AP6 wird die Gesamtarchitektur des Systems erarbeitet und in einem Testsystem an der Hochschule München validiert.
Weitere Informationen